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Abstract

Projective methods were introduced in an earlier paper [C.W. Gear, I.G. Kevrekidis, Projective Methods for Stiff

Differential Equations: problems with gaps in their eigenvalue spectrum, NEC Research Institute Report 2001-029,

available from http://www.neci.nj.nec.com/homepages/cwg/projective.pdf Abbreviated version to appear in SISC] as

having potential for the efficient integration of problems with a large gap between two clusters in their eigenvalue

spectrum, one cluster containing eigenvalues corresponding to components that have already been damped in the

numerical solution and one corresponding to components that are still active. In this paper we introduce iterated

projective methods that allow for explicit integration of stiff problems that have a large spread of eigenvalues with no

gaps in their spectrum as arise in the semi-discretization of PDEs with parabolic components.

� 2003 Elsevier Science B.V. All rights reserved.
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1. Introduction

In [1] we introduced the projective method which is based on the following very simple idea: any stable

method (the inner integrator) is used to integrate a problem over a number of small steps and then a

projective 2 step uses polynomial extrapolation to compute an approximation to the solution far ahead of

the inner integration steps. The first k steps of the inner integrator serve to damp the fast components in the

solution. The projective step then uses the result of the last step and the results from the next q inner steps to
extrapolate forward. This is shown in Fig. 1 with k ¼ 2 and q ¼ 1. It is clear that the slope of the chord

through y2 and y3 in Fig. 1 is a first-order approximation to the derivative, so we call this example a

Projective Forward Euler (PFE) method.
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The combination of the inner steps and the projective step effectively constitutes another integrator

which we call the outer integrator. It was shown that this integrator could be constructed so that it was

absolutely stable (hereafter referred to as ‘‘stable’’) if the eigenvalues of the problem Jacobian matrix were

in one of two regions, one corresponding to rapidly decaying components handled very stably by the inner

step and one corresponding to an approximation to the stability region of the outer integrator (the For-

ward Euler in the example of Fig. 1). Thus, for problems with a large gap between the time constants of the

fast inactive components and the time constants of the slow active components (those still causing changes
in the solution) one is able to project forward over large steps, commensurate with the slow components,

and gain speed (i.e., increase average step size). In the example shown in Fig. 1 we use three inner inte-

gration steps of length h0 to cover a distance h1 ¼ ð3þMÞh0. If we assume that the inner integration step

represents the bulk of the work (because, for example, evaluations of the derivatives are very expensive)

and that it is not possible to use a larger step size in the inner integrator, then we can define the speedup of

the projective method as the number of inner integration steps needed to integrate over the interval directly

divided by the number used when combined with the projective step. Thus the PFE method in Fig. 1 has a

speedup of

S ¼ ð3þMÞ=3:

We are particularly interested in the application of these methods when the inner integrator is a legacy

code that performs one time step. Often it is extremely difficult to modify such codes because they represent

many years of development, employ numerous devices such as split steps, and the original developers may

have long since left.

In this paper we consider an obvious extension of the projective method: Since the outer, or projective

integrator can be viewed as just another integrator, why not use it as the inner integrator in yet a further

projective integrator, and so on, ad infinitum? This is illustrated in Fig. 2 which has two projective levels.
Note that in this illustration the speedup of the 2nd level method is ½ð3þMÞ=3�2 since we cover a distance

ð3þMÞ2h with nine inner integrations.

The methods resulting from this iteration of the projective step can have two quite different sets of

properties. In one case they can handle problems that have multiple gaps – that is, whose eigenvalues lie in

one of a number of well-separated regions of the complex plane. In the second case we can choose the

method parameters so that its stability region includes a large section of the negative real axis and

neighboring points in the complex plane – methods we will call ‘‘½0; 1� stable’’ for reasons that will be

apparent later. This is the case that is applicable to parabolic equations and will be discussed in this paper.
The multiple gap case is discussed in [2].

Fig. 1. Projective Forward Euler method with k ¼ 2 and q ¼ 1.
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In the next section we will briefly review the stability analysis of projective methods and their important

properties so that we can discuss ½0; 1� stable methods in the third section.

2. Stability analysis

The usual linear stability analysis of time-stepping methods discusses stability in the hk-plane, where h is

the time step and k is an eigenvalue of the local linearization of the problem. We are applying a projective

step to any inner integrator (we may have, for example, a legacy code that performs one time step in a

manner we do not fully understand). Since the nature of the inner integrator affects the stability and since
we wish to analyze the stability of the projective process independently of the details of the inner integrator,

we analyze stability as a function of the error amplification, q, of the inner integrator, where q ¼ qðh0kÞ and
h0 is the time step of the inner integrator. For example, if the inner integrator were exact then q ¼ expðh0kÞ,
while if the inner integrator were Forward Euler, q ¼ ð1þ h0kÞ. (Of course, we cannot have an exact nu-

merical integrator unless the problem is particularly simple, but it is possible that a legacy code or a more

detailed simulation model provides an almost exact integration over one step for the range of problems

considered, albeit at a heavy computational cost.) Note that if the inner integrator is the forward Euler (FE)

method, then the q-plane is simply a unit translation of the more conventional hk-plane since in that case
q ¼ 1þ h0k.

The projective method consists of two processes: an inner integrator and a projective step. For example,

the PFE method completes one outer step over a distance h1 ¼ ðM þ k þ 1Þh0 from yn as follows:
1. Form ynþi for i ¼ 1; 2; . . . ; k þ 1 starting from yn using an inner integrator.

2. Form

ynþkþ1þM ¼ ðM þ 1Þynþkþ1 �Mynþk: ð1Þ

If the inner integrator has a one step error amplification of q, then, as discussed in [1], the error am-

plification of one outer step of the PFE is

r ¼ ½ðM þ 1Þq�M �qk: ð2Þ

It was shown in [1] that the stability region of this method breaks into two separate pieces whenever M is

more than about three times k. In other words, for largerM the method is only valuable for problems with a
gap in their spectrum. This is illustrated in Fig. 3 which shows the absolute stability region in the q-plane
for PFE method with k ¼ 2 and M ¼ 9, that is, the method consists of three inner steps of size h0 followed
by a linear projective step over a distance of 9h0 from the last two computed values. The above example

covers 12 steps for each three derivative evaluations, so the speedup is 4 but there has to be a gap in the

problem spectrum for this parameter choice to be stable for the problem.

Fig. 2. A two-level projective integrator.
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In contrast, if M is smaller, a single region of absolute stability is obtained, as illustrated in Fig. 4, which

is the stability region for the same method but withM ¼ 5. However, this method has a speedup of only 8/3.

Note that the stability region in Fig. 4 includes all of the real axis in the q-plane from 0 to 1. We will call

this a ½0; 1� stability region and call such methods [0,1] stable. If the inner integrator is the Forward Euler
method, q ¼ 1þ h0k so any real k 2 ½�1=h0; 0� maps into q 2 ½0; 1�. Similar results apply to most explicit

methods. Hence ½0; 1�-stable methods are potentially useful when problems have a spread of eigenvalues

along or near the negative real axis.

The disadvantage of ½0; 1�-stable methods is that we have shown that their speedup cannot be much

larger than three. In the next section we show how the projective methods can be applied recursively to

achieve ½0; 1� stability regions with greater speedup.

Fig. 4. Complex q-plane stability for P2–1–5 method.

Fig. 3. Complex q-plane stability for P2–1–9 method.
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In the generalized projective method we iteratively apply a new outer projective step to the results of the

previous outer step. To express the general form, it is convenient to change notation slightly. Write one step

of the inner integrator as

ysþ1 ¼ U0ðysÞ

so that one step of the outer integrator (for the PFE method) starting from a value zr is
1. Set y0 ¼ zr.
2. Form yi ¼ U0ðyi�1Þ for i ¼ 1; 2; . . . ; k þ 1.

3. Form zrþ1 ¼ ðM þ 1Þykþ1 �Myk.
We now refer to this as the first level outer integrator, and write it as

zrþ1 ¼ U1ðzrÞ:

The mth level outer integrator, Um, is defined recursively by

1. If m ¼ 0, Um is the inner integrator.

2. If m > 0 then UmðzÞ is defined by the process

2.1. Set y0 ¼ z;
2.2. Form yi ¼ Um�1ðyi�1Þ for i ¼ 1; 2; . . . ; k þ 1;

2.3. Form UmðzÞ ¼ ðM þ 1Þykþ1 �Myk.
Although we have used recursion for its definition, the method is applied iteratively, that is, from the

bottom up. We start with an inner integrator and, after sufficient steps (k þ 1 in the discussion above) have

been taken, we take a level-1 outer step. After sufficient level-1 steps (each of which involves multiple level-

0, or inner, steps) have been taken, we take a level-2 outer step, and so on. Each successive outer level

‘‘looks forward’’ or telescopes over many inner levels. Hence we call it a Telescopic Projective, or TP,

method.

For now, we will consider the stability of the fixed step, constant k–M TP method. We will assume that q
for the inner method is constant. (This is equivalent to the standard linear, constant coefficient analysis
assumption. Showing that a method is stable for such problems is not sufficient to show stability for more

general problems without significant additional assumptions, but methods that are not linearly stable are

seldom worth using for any problems!)

We define the stability region of the TP method to be the set of q such that all outer integrators are

stable. Suppose the amplification of one step of the mth outer integrator is rm. Then we have

rmþ1 ¼ ½ðM þ 1Þrm �M �rk
m; m ¼ 0; 1; . . . ; ð3Þ

where r0 ¼ q. Hence the stability region of the TP method is the set of q such that the iteration

q ½ðM þ 1Þq�M �qk ð4Þ

remains in the unit disk 3. This is the same as q remaining bounded since, if jrmj > 1 Eq. (3) implies

jrmþ1j � 1 > ðM þ 1Þðjrmj � 1Þ

from which it follows that rm diverges for M > 0.

In practice, of course, we do not use an infinite number of iterations of the projective operation. If we

stop after any given number of iterations, the resulting stability region will contain the stability region of

3 Formally this will be a fractal set, but all that is important for our purposes is that the set contains one (or more) connected regions

of stability.
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the infinitely iterated method as defined above. Hence, if a linear problem�s eigenvalues are in the stability

region as defined above, the use of any finite number of iterations will result in a linearly stable method.

In the above example, we have used the same value of M and k at each level of recursion and a constant

inner step size. That would not be the case in a practical automatic code where the outermost integrator

should use a step size and order automatically determined to be consistent with the current behavior of the

system and accuracy requirements. At the same time, an automatic integrator should detect when the step

size needed for stability is smaller than the step size possible for accuracy and limit the step to maintain

stability. (This has been detected in ODE codes in the past and used to make a decision to switch to more
expensive stiff methods.) In a projective method the step size must be limited to maintain stability since we

want to continue using explicit methods. At the same time, we get an estimate of the critical eigenvalues –

those limiting the step for stability. As the step size limitation becomes more severe, the order of the method

should be reduced (lower order methods provide a larger integration step per function evaluation when

stability is the limiting factor). When the possible step size for accurate integration is sufficiently larger than

that for stability, an additional outer level of integration can be added, leaving the older outer level as an

intermediate level at order one – since this provides sufficient accuracy at its smaller step. The new outer

integrator can use a higher-order method as before. In fact, the outer integrator can even be an ‘‘implicit
method’’ solved by Predictor–Corrector iteration, as discussed in [1]. Such methods usually have better

accuracy than explicit methods. (This brief discussion leaves out many details that are the subject of on-

going research.)

In many ways, the proposed methods are similar to the explicit Runge–Kutta methods with extended

ranges of stability (see [3–5]). Indeed, one outermost step (which is taken to be the collection of inner-level

steps plus the projective operation) can be expressed in the Runge–Kutta formalism if the innermost in-

tegrator is a conventional explicit integrator. However, there are several significant differences. First, if the

innermost integrator is a legacy code that is not a simple explicit integrator, the RK formalism no longer
applies. Second, the method coefficients of an RK method are precomputed to achieve certain stability

regions (and accuracy) and it does not seem feasible to change these coefficients in ‘‘mid step.’’ In contrast,

in the proposed methods, the step sizes of integrators at any level can be dynamically selected based on

current estimates of errors and significant eigenvalues. A third difference is that it is possible to accom-

modate ‘‘noisy’’ inner integrators, as would happen if the inner integrator were actually a Monte Carlo

simulation. (This can be done by estimating the chord or other low-degree polynomial from a large number

of integration steps.)

3. Stability and speedup of TP methods

One way to compute the stability region is to map the unit circle under the inverse of the mapping (4)

for a number of iterations. Actually, then we have the boundary of the stability region of only that

many applications of the TP method. Since the region shrinks at each iteration (and starts from the

finite unit disk) it must converge and in practice we quickly get a reasonable approximation to the

infinitely iterated region. Fig. 5 shows the stability region for 10 iterations of the P2–1–3 method 4. With
k ¼ 2 three inner integrations are used to cover one first-level outer integration step of length 6h0 so its

speedup is 2. Each successive outer integration provides an additional doubling of the speedup, so after

10 iterations we have an speedup of 210 ¼ 1024. However, by this time, the outer step size is 610h0 which

4 The designation Pk–q–M method means that k initial steps are used, a further q steps are used to generate a qth order extrapolate

through the last qþ 1 points, and the extrapolation is over M steps.
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may well too large for accurate integration of the active components! Thus, the speedup will be limited

by the relative speed of the fastest components compared to the active components. This will be dis-

cussed in the analysis below.

Fig. 5 suggests that the real axis from about )0.25 to +1.0 is inside the stability region – although we

have not shown that errors in calculation of the figure or further iterates do not change that conclusion.

Can we always guarantee that a section of the real axis of the q-plane including ½0; 1� is always in the

stability region so this method is ½0; 1� stable? The answer is that for any kP 1 and extrapolation order

qP 1 (using the last qþ 1 values) there exists an Mk;q such that all q 2 ½0; 1� are stable for any M 6Mk;q. We
will prove that statement at the end of this section.

The M chosen for Fig. 5 is the largest consistent with ½0; 1� stability for k ¼ 2; q ¼ 1. Fig. 5 suggests that

the boundary of the stability region touches the real axis in the interval ½0; 1�. That is true, becauseM has its

maximum value. Inevitably, when one chooses the ‘‘best’’ value of one parameter, the limit is pushed on

other criteria. We can keep the interior of ½0; 1� in the interior of the stability region by choosing a value of

M smaller than the maximum allowed. For example, Fig. 6 shows the stability region for 10 iterations of the

P2–1–2 method. However, the speedup of each projective step is 5/3 rather than the two of the P2–1–3

method.
Table 1 gives the values ofMk;q for 16 k6 10 and 16 q6 5. (The way these can be calculated is indicated

at the end of this section.)

Clearly, the larger M , the greater the speedup of the method because it integrates over a greater distance

for a given number of inner integration steps. The speedup of the first level of the projective step using the

maximum value M ¼ Mk;q consistent with ½0; 1� stability is shown in Table 2.

Table 3 shows the speedup of the method after five iterations. It also shows the step size ratio – that is,

the size of the 5th-level outer step as a multiple of h0. Although the speedups appear to increase significantly

as k increases, in practice the largest outer step size will be limited, and the size of the outer step also in-
creases with k. The effect is to make smaller values of k more efficient as shown below. After the mth level of

iteration we have a speedup of

Sm ¼ Sm
1 ¼ ½ðk þ qþMÞ=ðk þ qÞ�m:

Fig. 5. Stability region for P2–1–3 method after 10 iterations.
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Fig. 6. Stability region for P2–1–2 method after 10 iterations.

Table 1

Values of Mk;q

k q

1 2 3 4 5

1 2.00 3.56 1.57 2.94 1.50

2 3.00 5.92 2.25 4.68 2.14

3 6.66 8.27 4.34 6.40 3.92

4 8.32 10.60 5.35 8.11 4.82

5 12.21 12.93 7.47 9.82 6.59

6 14.24 15.27 8.66 11.52 7.62

7 18.22 17.60 10.78 13.23 9.37

8 20.48 19.93 12.07 14.93 10.48

9 24.48 22.25 14.18 16.63 12.21

10 26.91 24.58 15.55 18.37 13.38

Table 2

Values of speedup ðMk;q þ k þ qÞ=ðk þ qÞ
k q

1 2 3 4 5

1 2.00 2.19 1.39 1.59 1.25

2 2.00 2.48 1.45 1.78 1.31

3 2.66 2.65 1.72 1.91 1.49

4 2.66 2.77 1.76 2.01 1.54

5 3.04 2.85 1.93 2.09 1.66

6 3.04 2.91 1.96 2.15 1.69

7 3.28 2.96 2.08 2.20 1.78

8 3.28 2.99 2.10 2.24 1.81

9 3.45 3.02 2.18 2.28 1.87

10 3.45 3.05 2.20 2.31 1.89
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By this time the outermost step size is

hm ¼ ðk þ qþMÞmh0:

The largest outer step size that can be used will be limited 5 by the time constant of the active components in
the solution – the outer integrator must limit its step size for their accurate integration. Let us suppose that

this time scale is Dh0 – that is, we can use an outer integrator with step size no larger than D times that of

the inner integrator for accuracy. Consequently, we have

ðk þ qþMÞm 6D

or the largest m is given by

m � logðDÞ= logðk þ qþMÞ: ð5Þ

With this number of iterations of the outer integrator, a total of Nk;q;M ¼ ðk þ qÞm inner integrations will
have been used in one level-m outer step, or

Nk;q;M ¼ ðk þ qÞlogðDÞ= logðkþqþMÞ ¼ DlogðkþqÞ= logðkþqþMÞ: ð6Þ

Let us define pk;q;M to be the exponent of D in Eq. (6). Since D inner integration steps would be used to

integrate over the interval if no projective steps were done, the speedup is

S ¼ D=Nk;q;M ¼ D1�pk;q;M :

The smaller the value of pk;q;M the greater the speedup. Since pk;q;M decreases as M increases, the smallest

pk;q;M occurs when M is as large as possible (consistent with stability). That value of M ¼ Mk;q is shown in

Table 1. Thus, pk;q ¼ pk;q;Mk;q is the smallest p consistent with ½0; 1� stability. Its value is shown in Table 4. We

see that pk;q increases with k, indicating that the speedup decreases as k increases.

It is interesting to compare this technique with the explicit Runge–Kutta (RK) methods with extended

stability ranges discussed in [3–5]. Let m be the maximum iteration level we can use, as given by Eq. (5). If

we view a single level-m outer step of the TP method as if it were a single RK step, it uses s ¼ Dpk;q inner
integrations, or stages assuming one function evaluation per inner step, to cover an outer step size of

Table 3

Values of speedup and step size ratio for 5 iterations

k Speedup Step ratio

q ¼ 1 q ¼ 2 q ¼ 1 q ¼ 2

1 32.0 50.4 1024 3766

2 32.0 93.8 3125 1:1� 104

3 133.2 130.7 1:3� 104 2:6� 104

4 133.2 163.1 2:6� 104 5:2� 104

5 259.6 188.0 6:0� 104 9:3� 104

6 259.6 208.7 1:0� 105 1:5� 105

7 379.6 227.2 1:8� 105 2:4� 105

8 379.6 239.0 2:8� 105 3:7� 105

9 488.8 251.2 4:4� 105 5:4� 105

10 488.8 263.9 6:3� 105 7:7� 105

5 The step size needed for accurate integration of a component like expðktÞ by a conventional explicit method is always smaller than

that needed for stability since the former is concerned with the accurate approximation of expðhkÞ whereas the latter is concerned only

with the approximation being less than one in magnitude (for k in the negative half plane).
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H ¼ Dh0. Assume that the inner integration is explicit and its step size is h0 � 1=jReðkÞj where ReðkÞ is the
most negative real part of any eigenvalue. Then the method is stable for real eigenvalues k as negative as

given by H jkj � D ¼ s1=pk;q . For the case k ¼ 1 and q ¼ 1 from Table 4 we have the stability range � s2. This
compares with the stability range given in [5] of Cs2, although the RK methods achieved that with a larger
C and also for second-order methods. In that sense, those RK methods are superior, but, as we noted

earlier, they are less flexible for problems whose eigenvalues may be changing during a step and generally

cannot be used with legacy codes as the inner integrator. This is because the parameters in the RK methods

were chosen to maximize their stability regions at the expense of simplicity and flexible choice of internal

step sizes and order.

3.1. Existence of [0,1] stability regions

We will now prove that for any positive integers k and q such that the Pk–q–M TP method is ½0; 1� stable
for allM less than some maximumMk;q. We will do this by demonstrating that there is a line segment ½�b; 1�
with 06 b <1 that maps into itself under (4) and thus remains bounded. This section can be skipped by

the reader uninterested in the details of the proof.

3.1.1. Case q ¼ 1, first order
Let us first consider k ¼ 1 and the plot of r versus real q in Eq. (2). It is illustrated in Fig. 7. In general,

let it be the map

rðqÞ ¼ f ðM ; qÞ:

In this case, it is a quadratic function that has a minimum at

qmin ¼ 0:5M=ðM þ 1Þ

and does not exceed +1 for q 2 ½�b; 1�. If the minimum of r is �c ¼ rðqminÞ and if c6 b then the interval

½�b; 1� maps into itself. In this case, trivial algebra shows this to be true for 06M 6 2.

It is convenient to consider a requirement equivalent to c < b that is more useful for larger k and q. First
note that the minimum c is a function of M for any pair k and q. In this case we have

cðMÞ ¼ 1

M þ 1

M
2

� �2
:

Table 4

Values of pk;q

k q

1 2 3 4 5

1 0.50 0.58 0.81 0.78 0.89

2 0.61 0.60 0.81 0.76 0.88

3 0.59 0.62 0.76 0.75 0.84

4 0.62 0.64 0.77 0.75 0.84

5 0.62 0.65 0.76 0.75 0.82

6 0.64 0.66 0.77 0.75 0.82

7 0.64 0.67 0.76 0.75 0.81

8 0.65 0.68 0.76 0.75 0.81

9 0.65 0.68 0.76 0.76 0.81

10 0.66 0.69 0.77 0.76 0.81
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The equivalent requirement is that the map of �c does not exceed 1, or

f ðM ; cÞ ¼ ðM þ 1Þc2 þMc6 1 ð7Þ

f ðM ; cðMÞÞ is an increasing function of M for positive M . Hence, condition (7) is satisfied for all M in the

interval ½0;Mmax�, where Mmax is the smallest positive solution of f ðM ; cðMÞÞ ¼ 1, namely 2.
If k is odd and larger than 1, the plot of rðqÞ is very similar to Fig. 7 except that there is a multiple zero at

the origin. In this case we find that the minimum occurs at

qmin ¼
kM

ðk þ 1ÞðM þ 1Þ

and

c ¼ �rðqminÞ ¼
M

k þ 1

� �kþ1 k
M þ 1

� �k
:

The condition equivalent to Eq. (7) is

fkðM ; cÞ ¼ ck½ðM þ 1ÞcþM �6 1: ð8Þ

In Eq. (8) f is an increasing function of M so we find that the condition is satisfied for all M in the interval

½0;Mmax�, where Mmax is the smallest positive solution of fkðM ; cðMÞÞ ¼ 1.

If k is even, the plot changes to that shown in Fig. 8. Now the condition on c is that it must be less than b,
where �b is the value at which the graph of rðqÞ intersects the line r ¼ q in the lower left quadrant. This is
equivalent to

ck½ðM þ 1ÞcþM �6 c

or, if we define fkðM ; cÞ for even k as

fkðM ; cÞ ¼ ck�1½ðM þ 1ÞcþM

and by Eq. (8) for odd k, the condition for each kP 1 is

fkðM ; cÞ6 1:

Fig. 7. Real r–q map, k ¼ 1; q ¼ 1.
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3.1.2. Case q ¼ 2, second order
When q ¼ 2 the extrapolation formula leads to

rðqÞ ¼ qk ðM þ 1ÞðM þ 2Þ
2

q2

�
� MðM þ 2ÞqþMðM þ 1Þ

2

�
:

If k ¼ 1 the r–q graph is as shown in Fig. 9. Because its slope at q ¼ 0 exceeds +1, no part of the negative

real axis can be stable. However, as long as r does not lie outside of ½0; 1� for q 2 ½0; 1� then the method has

a ½0; 1� stability region. By simple algebra we note that

rðqÞ ¼ ðM þ 1ÞM þ 2

2

� �
ðq� q1Þðq� q2Þq;

Fig. 9. Real r–q map, k ¼ 1; q ¼ 2.

Fig. 8. Real r–q map, k even, q ¼ 1.
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where

qi ¼
MðM þ 2Þ �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�MðM þ 2Þ

p
ðM þ 1ÞðM þ 2Þ :

Thus the only real zero of r is at q ¼ 0 so r is everywhere positive for q > 0. Hence the method has a ½0; 1�
stability region as long as the local maximum does not exceed one. The maximum occurs at

q0 ¼
2MðM þ 2Þ �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðM � 1ÞMðM þ 2ÞðM þ 3Þ

p
3MðM þ 2Þ

for M > 1 and the largest M for which we have a ½0; 1� stability region is the smallest value of M for which

rðq0Þ ¼ 1.

If k is even, the graph takes the form in Fig. 10. In this case the method has a ½0; 1� stability region if the

local maximum does not exceed 1 and then the stability region includes the segment ½�b; 1� of the real axis.
If k > 1 and is odd, the graph takes the form shown in Fig. 11. While this is similar to Fig. 9, the high

order contact at the origin means that there is the section of the negative real axis ½�b; 0� that maps into

itself where �b is the intersect of the line r ¼ q and the graph. Again, for M less than the critical value at

which the local maximum is +1 the method has a ½0; 1� stability region.

3.1.3. Case q > 2
The earlier figures illustrate the general features for all q. If k þ q is even, r is positive when q is negative,

as in Figs. 7 and 10. However, there may be more maxima and minima than shown, so the conditions are

that no maxima exceed +1 and no minima be less than �b. If k þ q is odd, r is negative when q is negative,

as in Figs. 8, 9, and 11. In this case, the conditions are that no maxima exceed +1 and that no minima be

less than �b. (When k is one and q is even, we have the case in Fig. 9 and b is effectively zero.)
In the general case we have

rðqÞ ¼ qk MðM þ 1Þ � � � ðM þ qÞ
q!

Z 1

0

tM�1ðq� tÞq dt ð9Þ

for the qth order extrapolation. (This can be derived by tedious algebra or verified by expansion as a power

series in q.) It uses the fact that the qth order extrapolant is simply the qth order polynomial through the

last qþ 1 points k, k þ 1; . . . ; k þ q, and then rðqÞ is obtained by substituting qkþi for the k þ i data value.

Fig. 10. Real r–q map, k even, q ¼ 2.
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Since rðqÞ (given by Eq. (9)) is a polynomial in q whose coefficients are continuous (and differentiable)

functions of M , we only need to verify that the method is ½0; 1� stable for one value of M . Then we know

that it is ½0; 1� stable for all values ofM up to the first that violates the criteria discussed above. WhenM ¼ 0

we have rðqÞ ¼ qkþq and it is trivially true, hence we have ½0; 1� stability for some non-negative M .

From the expression in Eq. (9) we see that r is positive for all positive q when q is even. Hence for these

cases we need only look at local maxima in the interval ½0; 1� and ensure that they do not exceed 1. When q
is odd, we must compute both the positive local maxima and the negative local minima and ensure that (i)

the largest maxima does not exceed 1, and (ii) the smallest local minima, �c, is such that the map rð�cÞ is
less than one if k þ q is even, or is less than c is k þ q is odd. These criteria were used in an iteration to

compute the Mk;q shown in Table 1. (In fact, for the k and q considered, there was only one local minimum

and no local maximum when q was odd, and only one local maximum when q was even.)

4. Conclusion

We have shown how the projective method can be iterated to achieve larger regions of absolute stability.

Some simple numerical examples are given in [2] where it is also shown how to handle problems with multiple

gaps in their eigenspectrum. A combination of these two objectives could be used to have fewer gaps and

larger stability regions where needed. While the methods discussed do not appear to be as efficient as Runge–

Kutta methods designed to have extended stability regions, telescopic methods can be used with legacy codes,

they can be applied to ‘‘noisy integrators’’ such as Monte Carlo simulations, they are conceptually much

simpler, and it appears that it will be much easier to design an automatic code to adapt to the clusters of
eigenvalues in a specific problem.We are working on a code to do that, but it is too early to report on specifics.
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